[DIFERENÇAS] 7 características importantes para diferenciar BI, Data Mining e Big Data



Fonte: Aquarela

Olá turma,
Uma das perguntas mais frequentes que recebemos na Aquarela está relacionada aos conceitos BI (Business Intelligence), Data mining e Big Data. Uma vez que os três estão ligados à análise de dados, não é estranho que haja confusões.
O objetivo deste post é apresentar de maneira sucinta quais são as características mais marcantes de cada uma das soluções ajudando o leitor a definir sua estratégia de informação. Apesar das dores por falta de informação serem parecidas, cada caso é um caso.

O Básico

Inicialmente o ciclo de análise de dados segue, de maneira geral, os seguintes passos:
  1. Levantamento de perguntas: O que a empresa quer saber (descobrir) do seu negócio. Ex. Quantos clientes atendemos por mês? Qual o valor médio do produto? Qual o produto que mais vende?
  2. Estudo das fontes de dados: Quais dados estão disponíveis interna/externamente para responder as perguntas de negócio. Ex. Onde estão os dados? Como consigo processá-los?
  3. Definição do tamanho do projeto: Quem serão todos os envolvidos no projeto? Qual o será o tamanho da análise, quais serão as ferramentas utilizadas e os custos do projeto.
  4. Desenvolvimento: Operacionalização da estratégia, realizando o processamento dos dados assim como várias interações de validação com os envolvidos do projeto, sobretudo o cliente final, para saber se as perguntas de negócio estão sendo respondidas e realmente ajudando.
Até esse momento o BI, Data Mining e o BigData são muito parecidos. Na tabela abaixo fizemos um resumo que ajuda a delinear as diferenças em termos de 7 características.

 Tabela comparativa (clique para ampliar)

Quadro comparativo Aquarela Portugues

 Conclusões e recomendações

Apesar da análise se restringir a apenas 7 características, os resultados mostram que existem diferenças importantes entre BI, Data Maining and BigData. Abaixo seguem algumas conclusões de nossa análise e experiência:
  • Empresas que possuem uma solução de BI já consolidada tem mais maturidade para embarcar em projetos extensivos de Data mining e Big Data. E.g: descobertas feitas pelo Data mining ou Big Data podem ser rapidamente testadas e monitoradas pelo BI. Ou seja, os elementos podem e devem coexistir para realmente trazer valor ao negócio na forma de otimização de recursos, aumento de vendas e assim por diante.
  • O Big Data só faz sentido em grandes volumes de dados e a melhor opção para o seu negócio depende de quais perguntas estão sendo feitas e quais os dados disponíveis. Todas as soluções são dependentes do dado de entrada. Consequentemente se a qualidade das fontes de informação forem ruins, há grande chance de que a reposta seja ruim como frisa a expressão em inglês “garbage in, garbage out” Lixo entra, lixo saí.
  • Enquanto os painéis do BI podem ajudar a fazer sentido  de seus dados de maneira bastante visual e facilitada, não é possível fazer análises muito ricas com ele. Para isso é necessário soluções mais complexas, capazes de enriquecer a sua percepção da realidade do negócio, ajudando a encontrar correlações, novos segmentos de mercado (classificação, predição),  fazer previsões, controlar variáveis e seus efeitos em com relação as diversas outras por meio da análises multivariadas.
  • O BI é fortemente dependente de dados estruturados que são os mais utilizados atualmente, porém a tendência é de crescimento em dados não estruturados. Também, não demanda profissionais especialistas em estatística e ou engenharia do conhecimento.
  • O Big Data extende a possibilidade de análise sobre não estruturados. Ex: posts de redes sociais, imagens, vídeos, músicas e etc. Porém o grau de complexidade e exigência de conhecimento do operador é maior, bem como o alinhamento com os profissionais da gestão.
  • Para evitar frustrações é importante levar em consideração as diferenças nas virtudes (proposta de valor) e resultados de cada solução. Por exemplo, não esperar por descoberta de padrões e insights de negócio da própria ferramenta de BI, este é o papel do operador do BI.
  • O Big Data pode ser considerado em parte, a junção do BI e Data mining. O BI com seus dados estruturados em conjunção com a gama de algoritmos e técnicas do Data mining empoderado pelas novas tecnologias de grande processamento, armazenamento e memória; tudo processado de forma paralela e distribuída sobre uma gama gigantesca de fontes de informação heterogêneas.
  • Podemos observar que os resultados dos três geram inteligência para o negócio, da mesma forma como o bom uso de uma simples planilha também pode gerar inteligência, mas é importante avaliar se isso é suficiente para atender as ambições ou dilemas do seu negócio.
  • Vemos que o potencial do Big Data ainda não está sendo plenamente reconhecido, porém as empresas mais avançadas em termos de tecnologia hoje o têm como ponto chave de suas estratégias oferecendo gratuitamente seus serviços para alimentar seus Big Datas com dados estruturados e não estruturados. Ex. Gmail, Facebook, Twitter e OLX.
  • A tendência é que o crescimento do volume dos dados e sua variedade continue cada vez de forma menos estruturada como já escrevemos no post Dos dados à inovação.

Autores

Joni Hoppen – Sócio fundador e instrutor dos cursos de capacitação em Big Data da Aquarela, Mestre em “Business Information Technology” pela Universidade de Twente na Holanda.
Compatilhe no Google Plus

Sobre Grimaldo Oliveira

Mestre pela Universidade do Estado da Bahia (UNEB) no Curso de Mestrado Profissional Gestão e Tecnologias Aplicadas à Educação (GESTEC) com o projeto “GESMOODLE – Ferramenta de acompanhamento do aluno de graduação, no ambiente virtual de aprendizagem(MOODLE), no contexto da UNEB“. Possui também Especialização em Análise de Sistemas pela Faculdade Visconde de Cairu e Bacharelado em Estatística pela Universidade Federal da Bahia. Atua profissionalmente como consultor há mais de 15 anos nas áreas de Data Warehouse, Mineração de Dados, Ferramentas de Tomada de Decisão e Estatística. Atualmente é editor do blog BI com Vatapá. Livro: BI COMO DEVE SER - www.bicomodeveser.com.br

0 comentários: